Alistair Scott BSc, CEng, FILP

Past President Institution of Lighting Professionals Managing Director Designs for Lighting Ltd Chairman BSI CPL 34/08 Road Lighting

BS5489-1: 2013 (and EN13201)

Energy Reduction Strategy

Lighting Design standards

- Why they are essential?
- Energy reducing strategies supported by BS5489-1:2013
- BS5489 key changes
- Implications for LED & CMS

BS5489-1:2013

BS 5489-1:2013

Code of practice for the design of road lighting

Part 1: Lighting of roads and public amenity areas

 Guidance on using EN13201

No conflicts allowed with EN13201

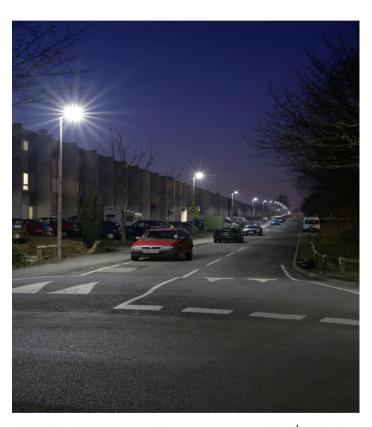
 EN13201 takes precedence

NO COPYING WITHOUT BSI PERMISSION EXCEPT AS PERMITTED BY COPYRIGHT LAW

raising standards worldwide™

BS 5489-1:2013 Themes for change

Recommendations for Road Lighting Design for all types of highway & public thoroughfare


- 1. Energy
- 2. Competency
- 3. Risk Assessments
- 4. Environment
- 5. Health & Safety

BS 5489-1:2013

5 Key Drivers for Energy Reduction:

- New minima for "P" classes
 - Potential for increased spacing or lower wattage
- 2. New Selection Process for Lighting Classes
 - lower target light levels
- 3. Revised Maintenance Factors
 - higher spacing or lower wattage
- 4. S/P ratio for white light sources
 - lower target illuminance on subsidiary roads
- 5. Variable Lighting
 - Reduction in consumed kWh

Energy Management Options

- Selection of Lighting Class
- Efficient White light source
- Electronic Gear
- Efficient luminaire
- Efficient design
- Variable Lighting
- Profiling
- Trimming
- Constant light output
- CMS

Energy Reduction Strategy #1

	Illuminance Values (E)			
Class	Average	Min		
P1	15	3		
P2	10	2		
P3	7.5	1.5		
P4	5	1		
P5	3	0.6		
P6	2	0.4		
P7	Performance not determined			

Proposed P classes for subsidiary roads in EN13201-2 ROADLIGHTING 2014 Auckland, New Zealand

Energy Reduction Strategy #2 Selection of Lighting Class

BS EN 13201-2 - Performance Requirements

Class	Lu	ıminance of tl	Disability glare	Lighting of surround		
	Dry condition Wet				Dry condition	
	\overline{L} cd/m ²	U _o [min]	U _l a [min]	U _o b [min]	TI in % ^c [max]	EIR ^d [min]
M1	2,00	0,40	0,70	0,15	10	0,35
M2	1,50	0,40	0,70	0,15	10	0,35
M3	1,00	0,40	0,60	0,15	15	0,30
M4	0,75	0,40	0,60	0,15	15	0,30
M5	0,50 0,35 0,40			0,15	15	0,30
M6	0,30 0,35 0,35			0,15	20	0,30

Energy Reduction Strategy #2 Selection of Lighting Class

Table A.2 – Lighting classes for very high speed (v≥ 60mph) and high speed traffic routes (v > 40mph)

	Lighting class				
Traffic volume	Dual car	Single			
	Junction density: high	Junction density: low	carriageway		
High to very high	M2	M3	M2		
Low to moderate	M3	M4	M3		
Very low	M4	M5	M4		

Energy Reduction Strategy #2 Selection of Lighting Class

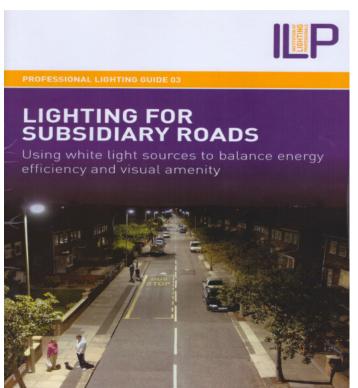
Table A.5 – Lighting classes for subsidiary roads with low speed traffic (v ≤ 30 mph) –

Traffic flow	Ambient luminance: very low (E1)	Ambient luminance: low (E2)	Ambient luminance: moderate (E3)	Ambient luminance: high (E4)
Busy	P3	P3	P2	P2
Normal	P4	P4	P3	P3
Quiet	P5	P5	P4	P4

BS5489-1 Selection of lighting classes for City & Town Centres

Energy Reduction Strategy #2 Selection of Lighting Class

Table A.8 – Lighting classes for city and town centres


Type of Traffic	Normal Traffic Flow		High Traffic Flow	
	E 3	E 4	E 3	E 4
Pedestrian Thoroughfare	P2	P1	P2	P1
Pedestrian only	C4	C3	C3	C2
Mixed vehicle and pedestrian with separate footways	C3	C2	C2	C1
Mixed vehicle and pedestrian on same surface	C2	C1	C1	C1

Energy Reduction Strategy #3 Luminaire Maintenance Factors

Table B.1 Luminaire Maintenance Factors

Environmental zone	Mounting height	Cleaning frequency					
		12 months	24 months	36 months	48 months	60 months	72 months
E1/E2	≤6 m	0.96	0.96	0.95	0.94	0.93	0.92
E1/E2	>6 m	0.96	0.96	0.95	0.94	0.93	0.92
E3/E4	≤6 m	0.94	0.92	0.90	0.88	0.86	0.84
E3/E4	>6 m	0.96	0.96	0.95	0.94	0.93	0.92

Energy Reduction Strategy #4

S/P ratios & white light

- ILP Research PLG 03
- reduction in target illuminance
- Based on S/P ratio of light source

Energy reduction Strategy #5 Variable Lighting

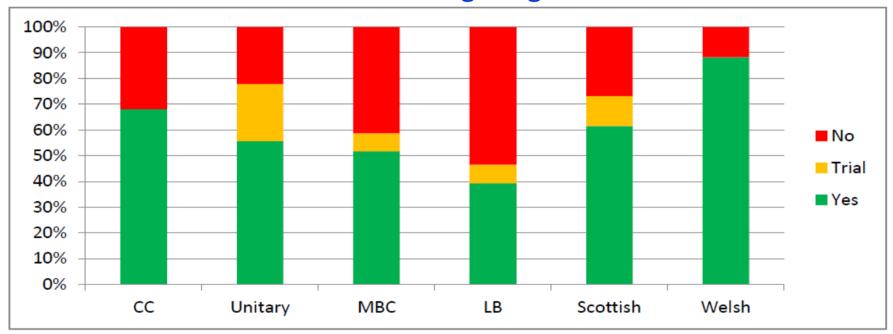


Figure 4 Variable lighting % uptake by authority type

EN 13201

•	Part 1	Selection	of lightin	g classes
---	--------	-----------	------------	-----------

- Part 2 Performance requirements
- Part 3 Calculation of performance
- Part 4 Methods of Measuring light performance
- Part 5 Energy performance indicators
 - Part 1 is technical report (not normative)
 - Part 5 is new

BS EN 13201-5 Energy Performance Indicators

New part on energy efficiency requirements

2 metrics; 1 for Engineers; 1 for politicians!

Power Density Calculation Watts / lux / m²

ECI – Energy Consumption Indicator kWh/m²

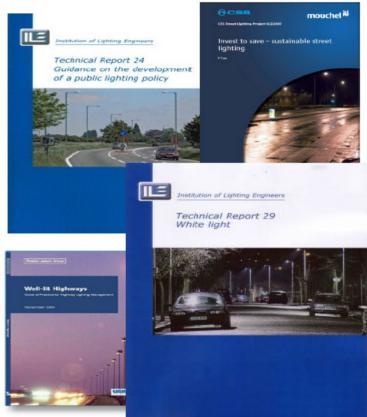
BS 5489-1:2013 & EN 13201

Strengths

- Comprehensive Guidance
- Flexibility on lighting classes
- Variable Light Levels
- White Light benefits
- Risk Assessment

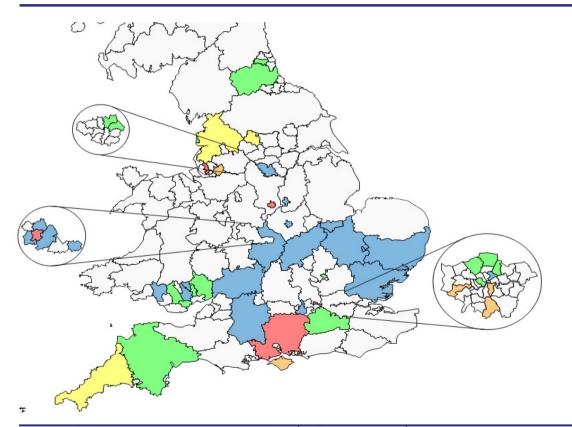
Intelligent Management of Public Lighting

the right light in the right place at the right time consuming the minimum amount of electrical energy



Save Money & Keep Lights On

- · Strategy & Policy
- Interpretation of Lighting Standards: BS5489 EN13201 CIE 115
- Asset Management & Energy Procurement & Reporting Protocol
- · Management & Maintenance Processes
- Review & Application of New & Emerging Technology



LED lighting revolution

LEDs are helping to deliver significant energy reductions in UK

Current UK CMS Deployments

Total UK CMS Market 1.35m units -

(19.5% of total UK street lighting)

(source: Telensa industry estimates)

Results – Energy Saving

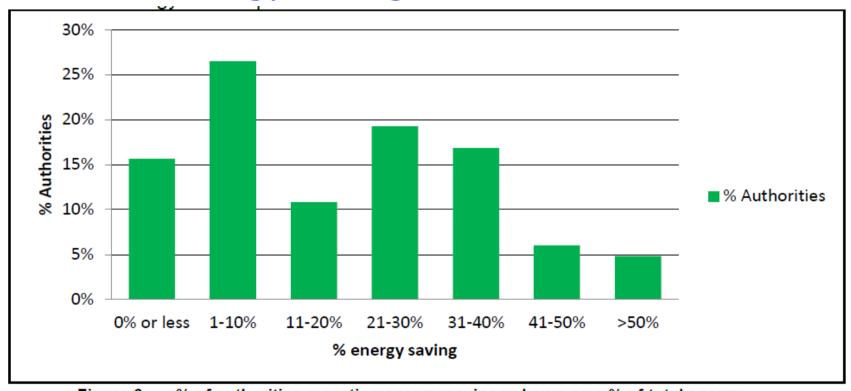
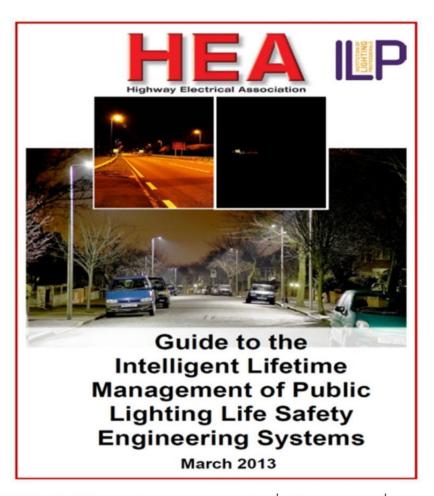



Figure 6 % of authorities reporting energy savings shown as a % of total energy

Lighting Standards & Best Practice

- Use available lighting standards & guides
- Use competent designers
- Create lighting policy
- Get policy agreed by LA
- Consult with stakeholders
- Do risk assessment for each design
- Record design decisions

Thank-you